CIB image toolbox technical manual

Site: CIB eLearning
Course: CIB image toolbox
Book: CIB image toolbox technical manual
Printed by: Guest user
Date: Friday, 22 November 2024, 4:21 AM

1. Introduction

This library contains implementations of a number of image processing algorithms for scanned documents processing.

These algorithms can be separated into next categories:

  • Filters:
    • Noise filters
    • Binarization filters
    • Modification filters
    • Affine transform filters
    • Special filters
  • Image information
  • Mergers
  • Segmenters
  • Image comparers

2. Calling CIB image toolbox

Calling via CIB job: example CIB job XML
<?xml version="1.0" encoding="ISO-8859-1" ?> 
<!-- XML jobfile für CIB job from version 1.0.4 -->
<root>
<!-- Definition of Jobs or Steps that a sent to documentserver from the caller --> <Comod> <!-- Default settings that are valid for all Jobs and Commands, if                                      they are not overwritten in the job or step -->
<defaults>
 <properties command="job">
             <property name="OutputMode">XML</property>    
             <property name="UseInMemoryProcessing">1</property>
 </properties> 
</defaults> 
<!-- List of all jobs in this job --> 
<jobs>
<job name="job1" expected-result-code="0">
<!-- List of all steps that are to be executed in this Job -->
<steps>
<step name="ipl"command="image-conversion"> 
 <properties>
  <property name="InputFilename">c:/Test/1/test.tif</property> 
  <property name="OutputDirectory">c:/Test/1/</property>          
  <property name="OutputFileNamePatterns">pattern_png_###;pattern_jpeg_prev_##;
   pattern_jpeg_thumbs_##</property>
  <property name="PageSelection">{ "PageRange" : "1", "Encoding" : "PNG", };{"PageRange" : "2", "Encoding" : 
          "JPEG", };{ "PageRange" : "1-10", "Encoding" :"JPEG", "MaxWidth" : "150" }</property>          
   <property name="Overwrite">true</property>          
   <property name="Threading">{ "SelectionThreads": "3", "RenderThreads" : "3" }</property>     
</properties>
     </step>   
</steps>
</job> 
</jobs>
</Comod>
</root>


Calling via CIB runshell
cibrsh -d request.xml

3. Input CIB IPL properties

Name

Possible values

Default

Data type

InputFilename

Path to a file

 

String

OutputDirectory

Path to a directory

 

String

OutputFileNamePatterns

“pattern[;pattern]”

 

String

TraceFilename

Any filename

 

String

PageSelection

{“PageRange”:”<start>[-<end>]”,
”MaxWidth”: number,
”MaxHeight”: number,
“MaxResolutionX”: number,
“MaxResolutionY”: number,
“ColorSpace”: string,
“ColorDepth”: number,
“Encoding”: string, “InterpolateMethod”:string,
“FilterMethod”:string,
[[“CompressionLevel”:number]
[, “Quality”:number]
[, “Border”: {
   “Width”: number,
   “Color”: string}]
[, “SpecialPageRange”:    {“PageRange”:”<start>[-<end>]”,
   ”MaxWidth”: number,
   ”MaxHeight”: number, …}]
[, “ImageToolboxParams”: {
   “AlgorithmSetPath”: string,
   “AlgorithmName”: string,
   “ProfilePath”: string]}]
[, “…”:…]]};...

 

JSON

Overwrite

“True”, “False”

False

Boolean

Threading

“SelectionThreads”: number,
“RenderThreads”: number

SelectionThreads: 1, RenderThreads: 1

String

ErrorBehavior

“Stop”, “Continue”, “Fill”

Continue

String

OperationName

For instance
“DocumentCropper”
“DocumentDeskewer”

 

String


4. Output CIB IPL properties

Name

Possible values

Default

Data type

OriginPageCount

<number>

 

Number

OriginMimeType

<IANA MimeType>

 

String

OriginImagePageInfo

{“PageRange”:”<start[-<end>]",
”Width”:number,
”Height”:number,
”ResX”:number,
”ResY”:number,
”ColorSpace”:string,
”ColorDepth”:number,
”Encoding”:string};...

 

JSON

ResultFileNamePatterns

“pattern[;pattern]”

 

String

ResultCount

“count per pagerange[;count per pagrange]”

 

String

ProcessingStatus

{”Status”:OK|NOK,
[“PageRange”:”<start>[-<end>]”,
”Errno”:number,
”Description”:string][,{…}]}

 

 

JSON


5. Properties details

In this chapter you can find details about different properties.

5.1. InputFilename

Property-Name

Data type

Type

InputFilename

String

Set

Specifies the filename of the input file. Supported image formats: BMP, PNG, JPEG, TIFF, SVG.

Syntax

InputFilename=filename.<ext>
<ext>: Supported image formats

 Example

InputFilename=file.tif


5.2. AlgorithmSetFileName

Property-Name

Data type

Type

AlgorithmsSetFileName
String
Set

Specifies the filename of the XML defining algorithms.

Syntax

AlgorithmsSetFileName=algorithms.xml

Example

AlgorithmsSetFileName=algorithms.xml

 


5.3. AlgorithmSetData

Property-Name

Data type

Type

AlgorithmsSetData
String
Set

Specifies the raw XML string data to be processed. This property overrides contents found on AlgorithmsSetFileName.

Syntax

AlgorithmsSetData=<XML>

Example

AlgorithmsSetData=
<algorithms> <algorithm name="CleanImage" inputs="InputFile=$1" outputs="CleanedImage=$0">  <processor type="CleanBackgroundToWhiteFilter" inputs="InputFile" outputs="CleanedImage" /> </algorithm>
</algorithms>


5.4. OutputDirectory

Property-Name

Data type

Type

OutputDirectory
String
Set

Specifies the output directory. ‘Absolute’ and ‘relative’ specifications are allowed. The File name is specified by the property OutputFileNamePatterns.

Syntax

OutputDirectory=.\Folder\

Example

OutputDirectory=.\Folder\


5.5. OutputFileNamePatterns

Property-Name

Data type

Type

OutputFileNamePatterns

String

Set


With this property a pattern for output filenames can be specified.

Per pageselection there is one pattern. If no pattern is preset, a unique name is generated that also contains a number pattern for multipage files. Placeholder for numbers is the hashtag “#”, where if there are several # Symbols, zeros are filled from the left. That means: “###” leads to “000” - “099”, but the value is not limited to the number of digits as represented by # Symbols. So the value for a placeholder “###” could be “123456789”.

This value can optionally contain a relative directory (e.g. “output\manipulatedImage”). However the directory must be ‘relative’ specified.

Syntax

OutputFileNamePatterns=<pattern>[;<pattern>]
<pattern>:<Patternname>_###.<ext>
<ext>: Supported image formats

Example

OutputFileNamePatterns=pattern_png_###.tif


5.6. TraceFilename

Property-Name

Data type

Type

TraceFilename

String

Set


Specifies the name of the log file (and, optionally, directory). If this property is set, a log file of the process is created. However the directory may only be defined ‘relative’.

Syntax

TraceFilename=filename.log

Example

TraceFilename=output\trace.log


5.7. PageSelection

Property-Name

Data type

Type

PageSelection

String

Set


Property for page selection. With this property you can describe, which page/pages should be processed.

If this property is not set or no parameters are passed, there is no conversion process and the logfile contains ‘Conversion isn't required: PageSelection isn't defined.’

Must only be positive values, otherwise conversion will fail with error.
Conversion parameter array is invalid or empty.’

 

Syntax

PageSelection={“PageRange”:”<start>[-<end>]”,”MaxWidth”: number, ” MaxHeight”: number, “MaxResolutionX”: number, “MaxResolutionY”: number, “ColorSpace”: string, “ColorDepth”: number, “Encoding”: string, [[“CompressionLevel”:number][, “Quality”:number] [, “Border”: { “Width”: number, “Color”: string}][, “SpecialPageRange”:  {“PageRange”:”<start>[-<end>]”, ”MaxWidth”: number, ”MaxHeight”: number, …}][, “ImageToolboxParams”: { “AlgorithmSetPath”: string, “AlgorithmName”: string,  “ProfilePath”: string]}] [, “…”:…]]};...


Example

Example #1:

PageSelection={ "PageRange" :"1", "Encoding" : "PNG", };{"PageRange" : "2", "Encoding" : "JPEG",};{ "PageRange" : "1-10", "Encoding" : "JPEG",
              "MaxWidth" : "150" }

 

Example #2:

{ "PageRange" :"1-3", "Encoding" : "TIFF","ColorSpace" : "sRGB", "ColorDepth" :"8", "MultiPageOutput" : true,
              "ImageToolboxParams" : { "AlgorithmSetPath" :"c:/Software/CIB/_IPL_problems/2016_11_29/AlgorithmsSet_sample.xml","AlgorithmName" : "Flip", "ProfilePath" :
              "c:/Software/CIB/_IPL_problems/2016_11_29/processing_profile.xml", },"Border" : { "Width" : "3", "Color" :"0,255,0", }, "SpecialPageRange" : { "PageRange"
              : "2-2", "AutoRotation":false, "MaxHeight" :"1000", "Border" : { "Width" : "5","Color" : "255,0,0", }, "ImageToolboxParams" : {"AlgorithmSetPath" :
              "c:/Software/CIB/_IPL_problems/2016_11_29/AlgorithmsSet_sample.xml","AlgorithmName" : "Invert", "ProfilePath1" :
              "c:/Software/CIB/_IPL_problems/2016_11_29/processing_profile.xml", },}, }

Parameter

Type

Description

Possible values

Default

PageRange

<start> [-<end>]

Page range

Accepts only positive numbers

 

MaxWidth

Number

Maximum width of an input image

Accepts only positive numbers

0

MaxHeight

Number

Maximum height of an input image

Accepts only positive numbers

0

MaxResolutionX

Number

Maximum X resolution of an image

Accepts only positive numbers

0

MaxResolutionY

Number

Maximum Y resolution of an image

Accepts only positive numbers

0

ColorSpace

String

Output color space of an image

See here

sRGB

ColorDepth

Number

Output color depth of an image

Accepts only positive numbers

0

Encoding

String

Output encoding of an image

Any supported by IPL image format

JPEG

CompressionLevel

Number

Quality for PNG format. See more in Quality property

Numbers in the range [0; 100]. 100 is the highest quality

50

Compression

Number

Same as CompressionLevel. CompressionLevel has higher priority

Numbers in the range [0; 100]. 100 is the highest quality

50

Quality

Number

Regulates quality of an output image. See more here

Numbers in the range [0; 100]. 100 is the highest quality

-1

Border

JSON

Specializes border for an image

 

 

SpecialPageRange

ImageToolboxParams

Contains specials params for some PageRange

It may contain the same properties like the parent PageRange does. The Default Values however are not set for the SpecialPageRange

Any valid JSON with right properties

 

AutoRotation

Boolean

Enable autorotation based on EXIF information

True | False

True

KeepAspectRatio

Boolean

Keep ratio between sides

True | False

False

MultiPageOutput

Boolean

Regulates multi page output

True | False

False

ExpandImage

Boolean

Fit image in an output image size. If False, crops an image

True | False

True

Width

Number/String

Set output image width

Any positive number

 

Width_Top

Number/String

Set border width at top

Any positive number

 

Width_Bottom

Number/String

Set border width at bottom

Any positive number

 

Width_Left

Number/String

Set border width at left

Any positive number

 

Width_Right

Number/String

Set border width at right

Any positive number

 

Color

Number/String

Set color for border

Set of three colors [0; 255]

 

Color_Top

Number/String

Set color for border at top

Set of three colors [0; 255]

 

Color_Bottom

Number/String

Set color for border at bottom

Set of three colors [0; 255]

 

Color_Left

Number/String

Set color for border at left

Set of three colors [0; 255]

 

Color_Right

Number/String

Set color for border at right

Set of three colors [0; 255]

 


5.8. Overwrite

Property-Name

Data type

Type

Overwrite

Boolean

Set


Specifies, must or not the library overwrite output images.

Syntax

Overwrite=<bool>
<bool>: true | false

Example

Overwrite=false


5.9. Threading

Property-Name

Data type

Type

Threading

String

Set

This property allows to control how many parallel threads should be used.

Syntax

Threading=”SelectionThreads:<number>, RenderThreads: <number>”

Example

Threading=”SelectionThreads: 3,RenderThreads: 3”


5.10. ErrorBehavior

Property-Name

Data type

Type

ErrorBehavior

String

Set


This property controls what should happen in case of an error.

Syntax

ErrorBehavior=<behavior>
<behavior>: Stop| Continue | Fill

Stop:

In the case of a failed conversion, the procedure stops with a runtime error and the message “Error behaviour defined as ‘Stop’. Convertion was stopped.

Continue: (Default)

Fill:

Force creation of blob or image although convertion failed.

Example

ErrorBehavior=Continue


5.11. OriginPageCount

Property-Name

Data type

Type

OriginPageCount

Number

Get


This property always refers to the source file and returns number of pages.

Syntax

OriginPageCount=<number>

Example

OriginPageCount=2


5.12. OriginMimeType

Property-Name

Data type

Type

OriginMimeType

String

Get


Returns the MimeType of the source file.

Syntax

OriginMimeType=<IANA MimeType>

Example

OriginMimeType=image/tiff


5.13. OriginImagePageInfo

Property-Name

Data type

Type

OriginImagePageInfo

JSON

Get


Returns detailed meta information about the source files. For example resolution and size, color space and color depth, encoding and the according page selection.

Syntax

OriginImagePageInfo=
<ext>: tif|etc |

Example

OriginImagePageInfo={"ColorDepth": 1, "ColorSpace": "Gray","Encoding": "Group4", "Height": 2327, "PageRange":"1-1", "ResolutionX": 200, "ResolutionY": 200, "Width": 1647 } ;{ "ColorDepth": 8, "ColorSpace":"Gray", "Encoding": "JPEG", "Height":2348, "PageRange": "2-2", "ResolutionX": 200,"ResolutionY": 200, "Width": 1674 }



5.14. ResultFileNamePatterns

Property-Name

Data type

Type

ResultFileNamePatterns

String

Get


Information about the used patterns for filenames.

Syntax

ResultFileNamePatterns=<pattern>[;<pattern>]
<pattern>:<patternname>_###.<ext>
<ext>: png | jpg | tif |…

Example

ResultFileNamePatterns=”pattern_png_%03d.png;pattern_jpeg_prev_%02d.jpg; pattern_jpeg_thumbs_%02d.jpg”


5.15. ResultCount

Property-Name

Data type

Type

ResultCount

JSON

GET


This JSON object describes the amount of pages that have been processed.

Syntax

ResultCount=<count per pagerange>[;<count per pagerange>]

Example

ResultCount{

                        "Count": 10,
                        "IsResultMultipage":false,
                        "PageRange": "1-10"
}


5.16. ProcessingStatus

Property-Name

Data type

Type

ProcessingStatus

JSON

Get


Provides information about the state of processing, which operation was or is conducted, in what area and if the operation was successful.

Syntax

ProcessingStatus=Operation:<operation>, PageRange: <pagerange>, RequiredRange:<requiredrange>, Status: 
                <status>
<operation>: Convertion | |
<pagerange>: <number> | <number>-<number>
<requiredrange>: <number> | <number>-<number>
<sstatus>: OK | NOK

Example

ProcessingStatus={Operation":"Convertion", "PageRange": "0","RequiredRange": "0", "Status": "OK" };{ "Operation": "Convertion", "PageRange":
                 "1", "RequiredRange": "1", "Status":"OK" } ;{ "Operation": "Convertion","PageRange": "0-1", "RequiredRange": "2","Status": "OK" }

 

Although the input for PageRange in the jobinterface starts with number 1 (e.g. “1-4”, the PageRange of the ProcessingStatus starts with (e.g. “0-3”).

 

Image Processing Library usage

Filters

For using filters you should perform next steps:

1. Include header for filters:

  #include "ImageProcessing_Filtration.h"

2. Create default utilities sets and copy them to new ProcessingProfile:

 UtilitiesSets sets = UtilitiesSetsCreator::CreateUtilitiesSets();
 ProcessingProfile profile;
profile.m_Utilities = sets.utilities;
 profile.m_DebugUtilities = sets.debugUtilities;

3. Create profile parser and parse selected profile:

 shared_ptr<ProfileParser> profileParser(ProfileParserCreator::CreateProfileParser());
 profileParser->ParseProfile(profileFileName, profile);

4. Load image for processing:

  RasterImage imageToProcess;
  shared_ptr< IPL::IOStreams::ImageDecoder > imageDecoder(
  IPL::IOStreams::ImageDecodersFabric::CreateImageDecoder());
  IPL::IOStreams::InputStream inputStream(inputFileName);
  imageToProcess = imageDecoder->decode(inputStream);

5. Create default filter creator (fabric):

  shared_ptr<ImageFilterCreator> filterCreator(
  ImageFilterCreatorsSelector::SelectImageFilterCreator() );

6. Create filters:

  int binarizationFilterType = IFK_SAVOULA_BINARIZER;
  int noiseFilterType =IFK_HUANG_BILATERAL_FILTER;
  shared_ptr<ImageFilter> binarizationFilter(
  filterCreator->CreateFilter(binarizationFilterType, profile) );
  shared_ptr<ImageFilter> noiseFilter(
  filterCreator->CreateFilter(noiseFilterType, profile) );

7. Process image:

  RasterImage processedImage;
  processedImage = binarizationFilter->apply(noiseFilter->apply(imageToProcess));

8. Show processing result:

  profile.m_DebugUtilities->ShowImage("Window Title for Processed Image", processedImage);

9. And store it:

  
shared_ptr< IPL::IOStreams::ImageEncoder > encoder(
             IPL::IOStreams::ImageEncodersFabric::CreateImageEncoder(IPL::IOStreams::IEK_JPG_ENCODER));
IPL::IOStreams::OutputStream outputStream(inputFileName + ".proc" + ".jpg");
encoder->encode(processedImage, outputStream);

 Look for sample FiltrationSample() in ImageProcessing_sample.cpp.

Segmenters

For using segmenters you should perform next steps:

1. Include header for segmenters:

  #include "ImageProcessing_Segmentation.h"

2. Create default utilities sets and copy them to new ProcessingProfile:

  UtilitiesSets sets = UtilitiesSetsCreator::CreateUtilitiesSets();
  ProcessingProfile profile;
  profile.m_Utilities = sets.utilities;
  profile.m_DebugUtilities = sets.debugUtilities;

3. Create profile parser and parse selected profile:

  shared_ptr<ProfileParser> profileParser(ProfileParserCreator::CreateProfileParser());
  profileParser->ParseProfile(profileFileName, profile);

4. Load image for processing and create array for results:

  RasterImage imageToProcess;
  RasterImageArray results;
  profile.m_DebugUtilities->ReadImageFromFile(inputFileName, imageToProcess);

5. Create default segmenter creator (fabric)

  shared_ptr<ImageSegmenterCreator> segmenter_creator(
  ImageSegmenterCreatorsSelector::SelectImageSegmenterCreator() );

6. Create segmenter:

  int segmenterType = ISK_RANGES_SEGMENTER;
  shared_ptr<ImageSegmenter> segmenter(
  segmenter_creator->CreateSegmenter(segmenterType, profile));

7. Process image:

  segmenter->segment(imageToProcess, results);

8. Save processing result to files:

  for (size_t imageNo = 0; imageNo < results.size(); ++imageNo) {
  profile.m_DebugUtilities->WriteImageToFile(results[imageNo],
         inputFileName + ".layer_" + std::to_string(imageNo) + ".jpg");
  }
or
  shared_ptr<IPL::IOStreams::ImageEncoder> encoder(
IPL::IOStreams::ImageEncodersFabric::CreateImageEncoder(IPL::IOStreams::IEK_JPG_ENCODER));
  for (size_t imageNo = 0; imageNo < results.size(); ++imageNo) {     IPL::IOStreams::OutputStream outoutStream(
       inputFileName + ".layer_" + std::to_string(imageNo) + ".jpg");    encoder->encode(results[imageNo], outoutStream);
  }

 Look for sample SegmentationSample() in ImageProcessing_sample.cpp.

User defined filters[edit | edit source]

For developing new filter (or segmenter) you should perform next steps:

1. Include header for filters:

  #include "ImageProcessing_Filtration.h"

2. Create new class which inherits class ImageFilter (or ImageSegmenter for segmenters).

3. Create implementations of methods for new class:

  virtual bool Initialize(ProcessingProfile& profile);
  virtual RasterImage::RasterImagePtr apply(RasterImage& image) final;

For using of new filter (or segmenter) you should perform next steps:

1. Create default filter creator (fabric):

  shared_ptr<ImageFilterCreator> filterCreator(
  ImageFilterCreatorsSelector::SelectImageFilterCreator() );

2. Create lambda for new filter creation:

ImageFilterCreator::ImageFilterCreationProcedure newFilterCreationProcedure =   

[](ProcessingProfile& profile) -> ImageFilter*

{    

return new UserDefinedImageFilter(profile);  

};


3. Add new filter to fabric:

  uint32_t newFilterKey = filterCreator->AddFilter(newFilterCreationProcedure);

4. Create profile and set processing parameters

  ProcessingProfile profile;
  profile["UserDefinedImageFilter/Parameter1"] = "1";

5. Create instance of user defined filter

  shared_ptr<ImageFilter> userDefinedFilter(
  filterCreator->CreateFilter(newFilterKey, profile) );

6. Process image by filters

  
processedImage = userDefinedFilter->apply(noiseFilter->apply(imageToProcess)); Look for sample class
UserDefinedImageFilter and UserDefinedImageFilter_sample() in ImageProcessing_sample.cpp.

Usage of DLL interface

CIB Job interface

Functions of this interface described in IPL_Interface.h.

Interface for doXisafe

For usage of the library from doXisafe ScenarioExecuter is available. It can be used by calling function CibImageProcessingRunScenario() declared in IPL_ScenarioExecuter_Interface.h.

Improvement functionality using plugins

IPL functionality can be improved by external module which are separated dynamically loading libraries.

Plugin interface

For developing IPL plugin you should implement functions declared in file IPL_Plugin_Interface.h as .dll (for Windows) or .so (for Linux):

  PluginInterfaceVersionType GetPluginInterfaceVersion();
  bool InitializePlugin(const std::string& pluginParametersString);
  RasterImage* RunPlugin(RasterImage& inputImage);
  bool DestroyPlugin();

Also library IPL_Plugin_Base.lib should be linked to your plugin.

Plugin usage

For using of plugin special filter was implemented. Key of this filter is IPL::Filtration::IFK_PLUGIN_FILTER.

Plugin file and corresponding processing parameters should be defined in processing profile

  <ExternalFilter>
      <PluginFileName>IPL_Plugin_sample.dll</PluginFileName>
       <PluginParametersString>1</PluginParametersString>
  </ExternalFilter>

or manually by correction of properties map

  
profile["PluginFileName/PluginParametersString"] = "0";

Processing profiles

Processing profiles are used for describing of processing parameters for implemented filters. Profile is a file in XML format with next structure (order of descriptions and filters/segmenters parameters does not matter):

  
<ProcessingProfile>     
  <Filter1>       
    <Filter1_Parameter1>Filter1_Parameter1_Value</Filter1_Parameter1>      
    ...       
    <Filter1_ParameterN>Filter1_ParameterN_Value</Filter1_ParameterN>   
 </Filter1>     
 ...      
 <FilterM>          
    <FilterM_Parameter1>FilterM_Parameter1_Value</FilterM_Parameter1>       
    ...       
    <FilterM_ParameterK>FilterM_ParameterK_Value</FilterM_ParameterK>   
 </FilterM>     
 <Merger1>          
   <Merger1_Parameter1>Merger1_Parameter1_Value</Merger1_Parameter1>       
   ...        
   <Merger1_ParameterY>Merger1_ParameterY_Value</Merger1_ParameterY>    
 </Merger1>     
 ...     
 <MergerL>         
   <MergerL_Parameter1>MergerL_Parameter1_Value</MergerL_Parameter1>       
   ...         
   <MergerL_ParameterX>MergerL_ParameterX_Value</MergerL_ParameterX>     
 </MergerM>    
 <Segmenter1>       
   <Segmenter1_Parameter1>Segmenter1_Parameter1_Value</Segmenter1_Parameter1>
   ...      
   <Segmenter1_ParameterY>Segmenter1_ParameterY_Value</Segmenter1_ParameterY>    
 </Segmenter1>      
 ...    
 <SegmenterL>         
   <SegmenterL_Parameter1>SegmenterL_Parameter1_Value</SegmenterL_Parameter1>        
   ...
   <SegmenterL_ParameterX>SegmenterL_ParameterX_Value</SegmenterL_ParameterX>   
 </SegmenterM> 
</ProcessingProfile>

6. Image processing algorithms: Filters

Filters are divided into: Affine transform filters, Binarization filters, Modification filters, Noise Filters, Special filters.

6.1. Affine transform filters

CroppingFilter
DocumentCropper
DocumentDeskewer
FlippingFilter
ResizeFilter
RotationFilter
DocumentCleaner
RotateAndMirrorFilter

CroppingFilter

This filter allows cropping of defined area of original image. Area for cropping can be defined in two ways:

  • By separated borders,
  • By single line.

In both cases you should keep in mind coordinate system of image. Pixel with coordinates (0;0) is located in top left corner of image:

Cropping filter

For example definitions

<ProcessingProfile>
...
 <CroppingFilter>   <IsResizingToSourceSizeRequired>1</IsResizingToSourceSizeRequired>    <CroppingArea>100;500;100;500</CroppingArea>  </CroppingFilter>
...
</ProcessingProfile>
<ProcessingProfile>
...  <CroppingFilter>    <IsResizingToSourceSizeRequired>1</IsResizingToSourceSizeRequired>   <Top>100</Top>   <Bottom>500</Bottom> <Left>100</Left> <Right>500</Right> </CroppingFilter>
...
</ProcessingProfile>

are equal.

Also filter can be used for cropping quadrangular areas. In this case user should define area as set of four clockwise points in format x0;y0;x1;y1;x2;y2;x3;y3:

<ProcessingProfile>
... <CroppingFilter>  <IsResizingToSourceSizeRequired>1</IsResizingToSourceSizeRequired>
 <CroppingArea>100;100;500;250;500;500;150;500</CroppingArea>
</CroppingFilter>
...
</ProcessingProfile>

In addition with usage of flag IsResizingToSourceSizeRequired (if it is not equal 0) result of cropping can be resized to size of original image.

Also you can define background color:

<BackgroundColor>0;0;0</BackgroundColor>


DocumentCropper

The filter auto-crops an input image.

This algorithm has no parameters.

Example

<step command="ipl"expected-result-code="0" name="ImageProcessingStep_page_1” timeout="0">
<properties>
<property name="WorkSpace">.\</property>
<property name="OperationName">DocumentCropper</property>
<property name="OutputFileName">cropedImage.png</property>
<property name="OutputDirectory">.\</property>
<property name="InputFilename">inputs\Versatel.png</property>
<property name="TraceFilename">file.log</property>
</properties>
</step>

DocumentDeskewer

The filter deskews an input image.

Parameters:

Property Name

Description

Default value

Profile:DocumentDeskewer/DetectOrientation

Detects image orientation and rotates it to the correct position (possible degrees of rotation only multiple of 90).

1

 

<step command="ipl" expected-result-code="0" name="ImageProcessingStep_page_1” timeout="0">
<properties>
<property name="WorkSpace">.\</property>
<property name="OperationName">DocumentDeskewer</property>
<property name="OutputFileName">deskewedImage.png</property>
<property name="OutputDirectory">.\</property>
<property name="InputFilename">inputs\Versatel.png</property>
<property name="TraceFilename">file.log</property>
</properties>
</step>

FlippingFilter

Flips an input image.

Parameters:

Property Name

Description

Default value

FlippingDirectionCode

Code of flipping operation direction:

  • 0 means flipping around the x-axis;
  • positive value (for example, 1) means flipping around y-axis;
  • negative value (for example, -1) means flipping around both axes.

 

1


ResizeFilter

Image resizing filter.

Parameters of image resizing can be set in two ways:

By scaling. In this case we should set parameter "ResizeFilter/ResizingParameter" to required scale value:

<ProcessingProfile>
...
 <ResizeFilter>  <ResizingParameter>0.5</ResizingParameter>
</ResizeFilter>
...
\endcod
</ProcessingProfile>e
-# By defining of target size. In this case we should set parameter
"ResizeFilter/ResizingParameter"
to required size value:
\code{.xml}
<ProcessingProfile>
... <ResizeFilter>   <ResizingParameter>W;H</ResizingParameter>  </ResizeFilter>
...
</ProcessingProfile>

where W is target width, H – height. If W or H is equal to 0 then this value will be calculated depends on other size and source image geometry. For example:

<ProcessingProfile>
...  <ResizeFilter>
    <ResizingParameter>0;1000</ResizingParameter>
</ResizeFilter>
...
</ProcessingProfile>

In this case width will be calculated:

height = 1000;

width = sourceImage.Width * (height / sourceImage.Height);

If W or H is less than 0 or empty then corresponding size will not be changed. For example samples

<ProcessingProfile>
...  <ResizeFilter>    <ResizingParameter>-1;1000</ResizingParameter>  </ResizeFilter>
...
</ProcessingProfile>

and

<ProcessingProfile>
...  <ResizeFilter>   <ResizingParameter>;1000</ResizingParameter>
</ResizeFilter>
...
</ProcessingProfile>

are equal and create image with width <sourceImage.Width>x1000 pixels.


RotationFilter

Interface for image clockwise rotation filter.

Property name

Description

Default value

RotationAngle

Rotation angle (in degrees)

0.0


DocumentCleaner

The DocumentCleaner gets an input image and tries to eliminate fog and uneven light so that the output looks almost like a scan.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...  <DocumentCleaner>    <BrightSpots>0</BrightSpots>
</DocumentCleaner>
...
</ProcessingProfile>

Property name

Description

Default value

BrightSpots

Enable this if the input image contains bright spots, for better performance of the algorithm.

false


RotateAndMirrorFilter

Filter for rotation and image mirroring.

Parameters of this filter can be described in profile:

<ProcessingProfile>
... <RotateAndMirrorFilter>   <Degrees>0</Degrees>  <Mirror>false</Mirror>
</RotateAndMirrorFilter>
...
</ProcessingProfile>

Property name

Description

Default value

Degrees

Degrees of rotation to be applied, only multiple of 90.

0

Mirror

If enabled, image will be mirrored.

false


6.2. Binarization filters

The following chapters explain each filter. Usually there is also an example given. The input image for the filters is the following picture:


COCOCLUST_Binarizer
FBCITB_Binarizer
FengBinarizerFilter
GaussianBlurFilter
LocalOtsuBinarizer
MedianBlurAGTFilter
MedianBlurATFilter
MedianBlurGATFilter
NativeAdaptiveBinarizer
NiblackBinarizerFilter
NICKBinarizerFilter
OtsuBinarizer
PureAdaptiveGaussianThresholdingFilter
PureAdaptiveThresholdingFilter
SauvolaBinarizerFilter
ThresholdFilter
WolfJolionBinarizerFilter

COCOCLUST_Binarizer

Parameters:

Threshold:45|CLAHEClipLimit:3.0|GaussianBlurKernelSize:19|CannyUpperThresholdCoeff:0.15

Output:



Implementation of COCOCLUST binarization.

This binarizator is described in the publication Kasar, T. and Ramakrishnan, A.G., 2009. COCOCLUST: Contour-based color clustering for robust binarization of colored text. Proc. The Third CBDAR, pp.11-17.

Parameters of this filter can be described in profile:

<ProcessingProfile>
... <COCOCLUST_Binarizer>  <Threshold>45</Threshold>    <CLAHEClipLimit>3.0</CLAHEClipLimit>   <GaussianBlurKernelSize>19</GaussianBlurKernelSize>  <CannyUpperThresholdCoeff>0.15</CannyUpperThresholdCoeff>  <CannyLowerThresholdCoeff>0.05</CannyLowerThresholdCoeff>  <CannyMorphIters>4</CannyMorphIters> </COCOCLUST_Binarizer>
...
</ProcessingProfile>

Property name

Description

Default value

Threshold

Threshold for preliminary clustering procedure

45

CLAHEClipLimit

Parameter for CLAHE procedure

3.0

GaussianBlurKernelSize

Parameter for Gaussian blur procedure

19

CannyUpperThresholdCoeff

Coefficient for upper threshold of Canny edge detector

0.15

CannyLowerThresholdCoeff

Coefficient for lower threshold of Canny edge detector

0.05

CannyMorphIters

Parameter of morphology operations

4



FBCITB_Binarizer

Parameters:

UseCanny:1|UseVariancesMap:1

Output:



Implementation of FBCITB binarization.

This binarizator is described in Kasar, T., Kumar, J. and Ramakrishnan, A.G., 2007, September. Font and background color independent text binarization. In Second international workshop on camera-based document analysis and recognition (pp. 3-9).

Parameters of this filter can be described in profile:

<ProcessingProfile>
... <FBCITB_Binarizer>   <UseCanny>1</UseCanny>   <UseVariancesMap>0</UseVariancesMap>  <VarianceMapThreshold>200</VarianceMapThreshold>  <CLAHEClipLimit>2.0</CLAHEClipLimit>   <GaussianBlurKernelSize>9</GaussianBlurKernelSize>    <CannyUpperThresholdCoeff>0.6</CannyUpperThresholdCoeff>   <CannyLowerThresholdCoeff>0.4</CannyLowerThresholdCoeff>   <BoundingRectangleMaxArea>0.3</BoundingRectangleMaxArea> </FBCITB_Binarizer>
...
</ProcessingProfile>

Property name

Description

Default value

UseCanny

Is not equal 0 if Canny border detection is required

1

UseVariancesMap

Is not equal 0 variances map is used for contour detection

0

VarianceMapThreshold

Variance threshold

200

CLAHEClipLimit

Parameter for CLAHE procedure

2.0

GaussianBlurKernelSize

Parameter for Gaussian blur procedure

9

CannyUpperThresholdCoeff

Coefficient for upper threshold of Canny edge detector

0.6

CannyLowerThresholdCoeff

Coefficient for lower threshold of Canny edge detector

0.4

BoundingRectangleMaxArea

Coefficient for the bounding rectangle area

0.3


FengBinarizerFilter

Parameters:

WindowSize:21|Alpha1:0.7|k1:0.2|k2:0.03|Gamma:2.0|MorphIterationCount:2

Output:



Implementation of Feng binarization.

This binarizator is described in Khurshid, K., Siddiqi, I., Faure, C. and Vincent, N., 2009, January. Comparison of Niblack inspired binarization methods for ancient documents. In Document Recognition and Retrieval XVI (Vol. 7247, p. 72470U). International Society for Optics and Photonics.

Parameters of this filter can be described in profile:

<ProcessingProfile>
... <FengBinarizerFilter> <WindowSize>21</WindowSize>
 <Alpha1>0.7</Alpha1>
 <k1>0.2</k1>
 <k2>0.03</k2>
 <Gamma>2.0</Gamma>
 <MorphIterationCount>2</MorphIterationCount> </FengBinarizerFilter>
...
</ProcessingProfile>

Property name

Description

Default value

WindowSize

Size of sliding window

21

Alpha1

Coefficient for threshold calculation

0.7

k1

Coefficient for threshold calculation

0.2

k2

Coefficient for threshold calculation

0.03

Gamma

Coefficient for threshold calculation

2.0

MorphIterationCount

Count of iterations of final dilate and erode operations

2

 


GaussianBlurFilter

In image processing, a Gaussian blur is the result of blurring an image by a Gaussian function. This function used to reduce Image noise and detail.

 

Parameters of this filter can be described in profile:

Please note that “KernelSize” only accept odd numbers!

<?xml version="1.0" encoding="utf-8"?>
<algorithms>
<algorithm name="ImageManipulation" TracingEnabled="false" inputs="in1=$1" outputs="out4=$1">
<layer>
<processor params="KernelSize:21" type="GaussianBlurFilter" outputs="out4" inputs="in1" />
</layer>
</algorithm>
</algorithms>  


LocalOtsuBinarizer

Parameters:

CLAHEClipLimit:0.0|GaussianBlurKernelSize:19|CannyUpperThresholdCoeff:0.15|CannyLowerThresholdCoeff:0.01|MaxValue:255.0|CannyMorphIters:1

Output:


Implementation of Otsu binarization algorithm.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <LocalOtsuBinarizer> <MaxValue>255.0</MaxValue> <CLAHEClipLimit>0.0</CLAHEClipLimit>  <GaussianBlurKernelSize>19</GaussianBlurKernelSize>   <CannyUpperThresholdCoeff>0.15</CannyUpperThresholdCoeff> <CannyLowerThresholdCoeff>0.01</CannyLowerThresholdCoeff>   <CannyMorphIters>1</CannyMorphIters> </LocalOtsuBinarizer>
...
</ProcessingProfile>

Property name

Description

Default value

MaxValue

Maximal value

255.0

CLAHEClipLimit

Parameter for CLAHE procedure

0.0

GaussianBlurKernelSize

Parameter for Gaussian blur procedure

19

CannyUpperThresholdCoeff

Coefficient for upper threshold of Canny edge detector

0.15

CannyLowerThresholdCoeff

Coefficient for lower threshold of Canny edge detector

0.01

CannyMorphIters

Parameter of morphology operations

1


MedianBlurAGTFilter

Parameters:

KernelSize:3|BlockSize:5|Shift:0.0|MaxValue:255.0

Output:


Median blur + Adaptive Gaussian threshold filter.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <MedianBlurAGTFilter> <KernelSize>3</KernelSize>   <MaxValue>255.0</MaxValue>  <BlockSize>5</BlockSize> <Shift>0.0</Shift>
 </MedianBlurAGTFilter>
...
</ProcessingProfile>

Property name

Description

Default value

KernelSize

Size of kernel of median blur filter

3

BlockSize

Size of sliding window

5

Shift

Constant subtracted from the mean or weighted mean

0.0

MaxValue

Color of background of binarized image

255.0


MedianBlurATFilter

Parameters:

KernelSize:3|BlockSize:5|Shift:0.0|MaxValue:255.0

Output:


Median blur + Adaptive threshold filter.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <MedianBlurATFilter>   <KernelSize>3</KernelSize> <MaxValue>255.0</MaxValue>  <BlockSize>5</BlockSize>  <Shift>0.0</Shift>
 </MedianBlurATFilter>
...
</ProcessingProfile>

Property name

Description

Default value

KernelSize

Size of kernel of median blur filter

3

BlockSize

Size of sliding window

5

Shift

Constant subtracted from the mean or weighted mean

0.0

MaxValue

Color of background of binarized image

255.0



MedianBlurGATFilter

Parameters:

Default Parameters

Output:


Gaussian blur + Adaptive threshold filter.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <MedianBlurGATFilter>
  <KernelSize>3</KernelSize>
  <SigmaX>10.0</SigmaX>
  <SigmaY>0.0</SigmaY> <MaxValue>255.0</MaxValue> <BlockSize>5</BlockSize> <Shift>0.0</Shift>
 </MedianBlurGATFilter>
...
</ProcessingProfile>

Property name

Description

Default value

KernelSize

Size of kernel of median blur filter

3

SigmaX

Sigma for horizontal direction

10.0

SigmaY

Sigma for vertical direction

0.0

MaxValue

Color of background of binarized image

255.0

BlockSize

Size of sliding window

5

Shift

Constant subtracted from the mean or weighted mean

0.0


NativeAdaptiveBinarizer

Parameters:

Default Parameters

Output:


Native adaptive thresholding.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <NativeAdaptiveBinarizer>   <IsGaussianBlurReqiured>0</IsGaussianBlurReqiured>  <MedianBlurKernelSize>5</MedianBlurKernelSize> <GaussianBlurKernelSize>3</GaussianBlurKernelSize>
  <GaussianBlurSigma>150</GaussianBlurSigma <IsAdaptiveThresholdCalculatedByGaussian>1</IsAdaptiveThresholdCalculatedByGaussian> <AdaptiveThresholdingMaxValue>255.0</AdaptiveThresholdingMaxValue> <AdaptiveThresholdingBlockSize>19</AdaptiveThresholdingBlockSize> <AdaptiveThresholdingShift>8</AdaptiveThresholdingShift> <BilateralFilterBlockSize>5</BilateralFilterBlockSize> <BilateralFilterColorSigma>50.0</BilateralFilterColorSigma> <BilateralFilterSpaceSigma>50.0</BilateralFilterSpaceSigma>
 </NativeAdaptiveBinarizer>
...
</ProcessingProfile>

Property name

Description

Default value

IsGaussianBlurReqiured

Flag of usage Gaussian blur

0

MedianBlurKernelSize

Kernel size for median blur

5

GaussianBlurKernelSize

Kernel size for Gaussian blur

3

GaussianBlurSigma

Gaussian blur sigma

150

IsAdaptiveThresholdCalculatedByGaussian

Flag of base of adaptive thresholding type

1

AdaptiveThresholdingMaxValue

New value for pixel which intensity greater than threshold value

255.0

AdaptiveThresholdingBlockSize

Kernel size for adaptive thresholding procedure

19

AdaptiveThresholdingShift

Shifting value for adaptive thresholding procedure

8

BilateralFilterBlockSize

Kernel size for bilateral filtration. If less than 0 then filtration isn't used

5

BilateralFilterColorSigma

Sigma for intensity range

50.0

BilateralFilterSpaceSigma

Sigma for space range

50.0


NiblackBinarizerFilter

Parameters:

WindowSize:101|ThresholdCoefficient:0.01|MorphIterationCount:2

Output:


Implementation of Niblack binarization.

This binarizator is described in Khurshid, K., Siddiqi, I., Faure, C. and Vincent, N., 2009, January. Comparison of Niblack inspired binarization methods for ancient documents. In Document Recognition and Retrieval XVI (Vol. 7247, p. 72470U). International Society for Optics and Photonics.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
  <NiblackBinarizerFilter>   <WindowSize>101</WindowSize>  <ThresholdCoefficient>0.01</ThresholdCoefficient>  <MorphIterationCount>2</MorphIterationCount> </NiblackBinarizerFilter>
...
</ProcessingProfile>

Property name

Description

Default value

WindowSize

Size of sliding window

101

ThresholdCoefficient

Coefficient $k$ for threshold calculation

0.01

MorphIterationCount

Count of iterations of final dilate and erode operations

2


NICKBinarizerFilter

Parameters:

WindowSize:101|ThresholdCoefficient:0.01|MorphIterationCount:2

Output:


Implementation of NICK binarization.

This binarizator is described in Khurshid, K., Siddiqi, I., Faure, C. and Vincent, N., 2009, January. Comparison of Niblack inspired binarization methods for ancient documents. In Document Recognition and Retrieval XVI (Vol. 7247, p. 72470U). International Society for Optics and Photonics.

Parameters of this filter can be described in profile:

<ProcessingProfile>
... <NICKBinarizerFilter>   <WindowSize>101</WindowSize>   <ThresholdCoefficient>0.01</ThresholdCoefficient> <MorphIterationCount>2</MorphIterationCount> </NICKBinarizerFilter>
...
</ProcessingProfile>

Property name

Description

Default value

WindowSize

Size of sliding window

101

ThresholdCoefficient

Coefficient $k$ for threshold calculation

0.01

MorphIterationCount

Count of iterations of final dilate and erode operations

2


OtsuBinarizer

Parameters:

MaxValue:255

Output:


Interface for Otsu binarization algorithm.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <OtsuBinarizer>  <MaxValue>255.0</MaxValue>
  </OtsuBinarizer>
...
</ProcessingProfile>

Property name

Description

Default value

MaxValue

Color of background of binarized image

255.0


PureAdaptiveGaussianThresholdingFilter

Parameters:

MaxValue:255|BlockSize:5|Shift:0.0

Output:


Pure adaptive Gaussian thresholding filter.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <PureAdaptiveGaussianThresholdingFilter> 
<MaxValue>255.0</MaxValue>
<BlockSize>5</BlockSize> 
<Shift>0.0</Shift>
 </PureAdaptiveGaussianThresholdingFilter>
...
</ProcessingProfile>

Property name

Description

Default value

MaxValue

Color of background of binarized image

255.0

BlockSize

Size of sliding window

5

Shift

Constant subtracted from the mean or weighted mean

0.0


PureAdaptiveThresholdingFilter

Parameters:

MaxValue:255|BlockSize:5|Shift:0.0

Output:


Pure adaptive thresholding filter.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <PureAdaptiveThresholdingFilter>  <MaxValue>255.0</MaxValue> <BlockSize>5</BlockSize> <Shift>0.0</Shift>
 </PureAdaptiveThresholdingFilter>
...
</ProcessingProfile>

Property name

Description

Default value

MaxValue

Color of background of binarized image

255.0

BlockSize

Size of sliding window

5

Shift

Constant subtracted from the mean or weighted mean

0.0



SauvolaBinarizerFilter

Parameters:

WindowSize:101|ThresholdCoefficient:0.00|MorphIterationCount:2

Output:


Implementation of Sauvola binarization.

This binarizator is described in Shafait, F., Keysers, D. and Breuel, T.M., 2008, January. Efficient implementation of local adaptive thresholding techniques using integral images. In Document recognition and retrieval XV (Vol. 6815, p. 681510). International Society for Optics and Photonics.

Parameters of this filter can be described in profile:

<ProcessingProfile>
... <SauvolaBinarizerFilter>  <WindowSize>101</WindowSize>   <ThresholdCoefficient>0.01</ThresholdCoefficient> <MorphIterationCount>2</MorphIterationCount> </SauvolaBinarizerFilter>
...
</ProcessingProfile>

Property name

Description

Default value

WindowSize

Size of sliding window

101

ThresholdCoefficient

Coefficient for threshold calculation

0.01

MorphIterationCount

Count of iterations of final dilate and erode operations

2


ThresholdFilter

Parameters:

ThresholdValues:100;128;90

Output:


Pure thresholding binarizator.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <ThresholdFilter>
    <ThresholdValues>100;128;90</ThresholdValues>
 </ThresholdFilter>
...
</ProcessingProfile>

Property name

Description

Default value

ThresholdValues

Values of threshold for each color channel

100; 128; 90

Also we can define equal value of thresholds for each channel:

<ProcessingProfile>

...

 <ThresholdFilter>

    <ThresholdValues>128</ThresholdValues>

 </ThresholdFilter>

...

</ProcessingProfile>


WolfJolionBinarizerFilter

Parameters:

WindowSize:101|ThresholdCoefficient:0.00|MorphIterationCount:2

Output:



Implementation of WolfJolion binarization.

This binarizator is described in Khurshid, K., Siddiqi, I., Faure, C. and Vincent, N., 2009, January. Comparison of Niblack inspired binarization methods for ancient documents. In Document Recognition and Retrieval XVI (Vol. 7247, p. 72470U). International Society for Optics and Photonics.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
  <WolfJolionBinarizerFilter>  <WindowSize>101</WindowSize>  <ThresholdCoefficient>0.01</ThresholdCoefficient> <MorphIterationCount>2</MorphIterationCount> </WolfJolionBinarizerFilter>
...
</ProcessingProfile>

Property name

Description

Default value

WindowSize

Size of sliding window

101

ThresholdCoefficient

Coefficient for threshold calculation

0.01

MorphIterationCount

Count of iterations of final dilate and erode operations

2



6.3. Modification filters

AlphaMaskFilter
AutoInvertFilter
CleanBackgroundToWhiteFilter
CloseFilter
ColorRangesFilter
ColorSpaceConvertionFilter
ContrastEnhancementFilter
DilateFilter
ErodeFilter
GuoHallThinningFilter
HistogramEqualizationFilter
InvertFilter
OpenFilter
ZhangSuenThinningFilter
ColorRangeConverter
BalanceWhiteFilter
ColorBalanceFilter
ColorSwapFilter

AlphaMaskFilter

Filter for alpha channel thresholding.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <AlphaMaskFilter> <Threshold>128</Threshold> <IsInvertedMaskRequired>0</IsInvertedMaskRequired>  <IsBinaryMaskRequired>1</IsBinaryMaskRequired>
</AlphaMaskFilter>
...
</ProcessingProfile>

 

Property name

Description

Default value

Threshold

Threshold value for applying

128

IsInvertedMaskRequired

If it is not equal 0 then obtained mask should be inverted

0

IsBinaryMaskRequired

– If it is not equal 0 then obtained mask should be binary image else – halftone

1


AutoInvertFilter

Parameters:

Output:


Implementation of auto inversion procedure.

Image will be inverted if a number of non-black point is greater or equal than half of image area.

This filter have no parameters.


CleanBackgroundToWhiteFilter

Parameters:

gamma:1.0|blackValue:70|whiteValue:170

Output:


The filter cleans background with making all near-white colors true white color.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <CleanBackgroundToWhiteFilter> <gamma>1.0</gamma> <blackValue>70</blackValue> <whiteValue>170</whiteValue>
 </CleanBackgroundToWhiteFilter>
...
</ProcessingProfile>

Property name

Description

Default value

gamma

Gamma value

1.0

blackValue

Set black value threshold for the algorithm

70

whiteValue

Set white value threshold for the algorithm binary image else – halftone

170


CloseFilter

Parameters:

IterationCount:2

Output:


Morphology operation 'Close'.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <CloseFilter>   <IterationCount>1</IterationCount>
  </CloseFilter>
...
</ProcessingProfile>

Property name

Description

Default value

IterationCount

Number of iteration of procedure

1


ColorRangesFilter

Parameters:

<default Parameters>

Output:


Interface for color ranges filter.

This filter allows to extract from image all pixels with colors that fall within user defined ranges (or if it is required pixel that do not fall within these ranges). These ranges can be defined by definition of lower and upper range boundary:

<ProcessingProfile>
...
  <ColorRangesFilter> <IsMaskOnlyRequired>0</IsMaskOnlyRequired>
 <IsInRangeColorsRequired>0</IsInRangeColorsRequired>  <LowerBoundaries>0,0,0;130,55,80</LowerBoundaries> <UpperBoundaries>128,128,128;209,190,190</UpperBoundaries> <RangeShapes>b(0, 0, 0, 127, 127, 127)</RangeShapes> </ColorRangesFilter>
...
</ProcessingProfile>

Color ranges can be defined in two ways:

  • by color values boundaries (LowerBoundaries and UpperBoundaries options)
  • by definition of shapes in colorspace (RangeShapes option; this option has higher priority).

For color values boundaries usage we should define lower and upper values of color for each color range:

<LowerBoundaries>R1_L,G1_L,B1_L;R2_L,G2_L,B2_L</LowerBoundaries>
<UpperBoundaries>R1_U,G1_U,B1_U;R2_U,G2_U,B2_U</UpperBoundaries>

where R1_L – lower boundary of red color for the first range, R1_U – upper boundary of red color for the first range.

The same results can be obtained using the second way: we can define corresponding boxes (rectangular shapes):

<RangeShapes>b(R1_L,G1_L,B1_L, R1_U,G1_U,B1_U);b(R2_L,G2_L,B2_L, R2_U,G2_U,B2_U)</RangeShapes>

Also spherical shapes can be used:

<RangeShapes>s(centerR, centerG, centerB, diameter)</RangeShapes>

There is special way for spherical shapes usage: we can use set of spheres to definition of extensional areas. For example, if we have following spheres set:

<RangeShapes>s{(5, 5, 5, 30) - (50, 50, 50, 40) - (100, 100, 50, 50) - (100, 100, 200, 25) - (200, 100, 50, 25)}</RangeShapes>

then we will obtain next 3D area for color selection (intermediate spheres parameters would be calculated automatically).

If IsMaskOnlyRequired is not equal 0 then we obtain only binary mask for defined color ranges.


ColorSpaceConvertionFilter

Parameters:

TargetColorspace:HSV|SourceColorspace:RGB

Output:


Interface of image color space convertion procedure.

This filter can be used for transforming current color space of image (this information can be obtained from input image) to user defined color space.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <ColorSpaceConvertionFilter> <TargetColorspace>HSV</TargetColorspace> <SourceColorspace>RGB</SourceColorspace>
 </ColorSpaceConvertionFilter>
...
</ProcessingProfile>

Property name

Description

Default value

TargetColorspace

required color space

 

SourceColorspace

color space of source image

 

 

Currently implemented next conversions are:

  • RGB -> GRAY
  • RGB -> BGR
  • RGB -> HSV
  • RGB -> HLS
  • RGB -> Lab
  • RGB -> Luv
  • RGB -> XYZ
  • RGB -> YUV
  • RGB -> YCrCb
  • GRAY -> RGB
  • BGR -> RGB
  • HSV -> RGB
  • HLS -> RGB
  • Lab -> RGB
  • Luv -> RGB
  • XYZ -> RGB
  • YUV -> RGB
  • YCrCb -> RGB


ContrastEnhancementFilter

Parameters:

CLAHEClipLimit:2.0

Output:


Contrast enhancement by CLAHE algorithm.

This filter enhance local contrast of image using algorithm CLAHE.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <ContrastEnhancementFilter> <CLAHEClipLimit>2.0</CLAHEClipLimit>
  </ContrastEnhancementFilter>
...
</ProcessingProfile>

Property name

Description

Default value

CLAHEClipLimit

Parameter of local contrast enhancement procedure

2.0


DilateFilter


Parameters:

IterationCount:3

Output:


Morphology operation 'Dilate'.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <DilateFilter> <IterationCount>1</IterationCount>
 </DilateFilter>
...
</ProcessingProfile>

Property name

Description

Default value

IterationCount

Number of iteration of procedure

1


ErodeFilter

Parameters:

IterationCount:1

Output:


Morphology operation 'Erode'.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <ErodeFilter> <IterationCount>1</IterationCount>
 </ErodeFilter>
...
</ProcessingProfile>

Property name

Description

Default value

IterationCount

Number of iteration of procedure

1


GuoHallThinningFilter

Interface for thinning a binary image using Guo-Hall algorithm.

In details this algorithm is described in Kumar, H. and Kaur, P., 2011. A comparative study of iterative thinning algorithms for BMP images. International journal of computer Science and information Technologies (IJCSIT).

This filter has no parameters.


HistogramEqualizationFilter

This filter normalizes the image brightness and contrast by normalizing its histogram.

This filter have no parameters.


InvertFilter

Example

Parameters:

Input:

Output:

Interface for image color inversion.
This filter has no parameters.

OpenFilter

Example

Parameters:
IterationCount:1

Input: (zoomed in)

Output: (zoomed in)

Morphology operation 'Open'.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <OpenFilter> <IterationCount>1</IterationCount>
 </OpenFilter>
...
</ProcessingProfile>

Property name

Description

Default value

IterationCount

Number of iteration of procedure

1


ZhangSuenThinningFilter

Example

Parameters:

Input:

Output:


Interface for thinning a binary image using Zhang-Suen algorithm.

In details this algorithm is described in Kumar, H. and Kaur, P., 2011. A comparative study of iterative thinning algorithms for BMP images. International journal of computer Science and information Technologies (IJCSIT).

This filter has no parameters.


ColorRangeConverter

Converts the color range of the image.

This filter creates the new image using the equation:

dst(x,y) = src(x,y) * Multiplier + Shift

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <ColorRangeConverter> <Multiplier>1.0</Multiplier>  <Shift>0.0</Shift>
 </ColorRangeConverter>
...
</ProcessingProfile>

Property name

Description

Default value

Multiplier

Multiplier (see eq.)

1.0

Shift

Shift (see eq.)

0.0


BalanceWhiteFilter

Filter for white balance correction.

Equation that describes the output image:

dst(x,y) = WhiteBalance(src(x,y)) * Multiplier + Shift

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <BalanceWhiteFilter> <SaturationThreshold>0.9</SaturationThreshold> <Multiplier>1.8</Multiplier> <Shift>0.0</Shift>
 </BalanceWhiteFilter>
...
</ProcessingProfile>

Property name

Description

Default value

SaturationThreshold

Saturation threshold

0.9

Multiplier

Multiplier (see eq.)

1.8

Shift

Shift (see eq.)

0.0


ColorBalanceFilter

Filter for color balance correction.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <BalanceWhiteFilter> <ColorBalanceGamma>1.0</ColorBalanceGamma> <SaturationGamma>1.0</SaturationGamma>
 </BalanceWhiteFilter>
...
</ProcessingProfile>

Property name

Description

Default value

ColorBalanceGamma

Color balance, less than 1 for warm colors, greater than 1 for cold colors. Range (0, 2). Limits are excluded.

1.0

SaturationGamma

Saturation coefficient. Range (0, 2). Limits are excluded.

1.0


ColorSwapFilter

Filter for color channels swap.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <ColorSwapFilter>  <SwapPercent>1</SwapPercent> <SwappedChannels>RB</SwappedChannels>
 </ColorSwapFilter>
...
</ProcessingProfile>

Property name

Description

Default value

SwapPercent

Percent of swapping. Range [1 .. 100]

1

SwappedChannels

Swapped channels brief names. For example, “RB” for R <-> B channel swapping.

RB


6.4. Noise filters

BilateralFilter
HuangBilateralFilter
MedianBlurFilter

BilateralFilter

Parameters:

KernelSize:15|ColorSigma:170|SpaceSigma:210

Output:


Implementation of generic bilateral filter.

This filter is described in Zhang, M., 2009. Bilateral filter in image processing.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
  <BilateralFilter> <KernelSize>5</KernelSize>  <ColorSigma>100</ColorSigma> <SpaceSigma>150</SpaceSigma> </BilateralFilter>
...
</ProcessingProfile>

Property name

Description

Default value

KernelSize

Size of kernel of bilateral filter

5

ColorSigma

Sigma for intensity range

100

SpaceSigma

Sigma for space range

150


HuangBilateralFilter

Parameters:

KernelSize:15|ColorSigma:170|SpaceSigma:210

Output:



Implementation of Huang bilateral filter.

This filter is described in Huang, Y.L. and Fuh, C.S., 2006. Noise reduction using enhanced bilateral filter. Images and Recognition, 12(4), pp.46-53.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
  <HuangBilateralFilter>  <KernelSize>5</KernelSize> <ColorSigma>100</ColorSigma> <SpaceSigma>150</SpaceSigma> </HuangBilateralFilter>
...
</ProcessingProfile>

Property name

Description

Default value

KernelSize

Size of kernel of bilateral filter

5

ColorSigma

Sigma for intensity range

100

SpaceSigma

Sigma for space range

150


MedianBlurFilter

Parameters:

KernelSize:5

Output:


Interface for median blur filter.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
 <MedianBlurFilter>
  <KernelSize>5</KernelSize>
 </MedianBlurFilter>
...
</ProcessingProfile>

Property name

Description

Default value

KernelSize

Size of kernel of bilateral filter

5


6.5. Special filters

CompositeFilter
ExternalFilter

CompositeFilter

Special filter for algorithms execution.

Parameters of this filter can be described in profile:

<ProcessingProfile>
... <CompositeFilter>
 <AlgorithmsSetFilename>../AlgorithmsSet_sample.xml</AlgorithmsSetFilename> <AlgorithmName>SimpleAlgorithm</AlgorithmName> </CompositeFilter>
...
</ProcessingProfile>

Property name

Description

Default value

AlgorithmsSetFilename

Name of file with algorithms description

 

AlgorithmName

Name of algorithm from selected set

 


ExternalFilter

Filter for plugin usage.

Parameters of this filter can be described in profile:

<ProcessingProfile>
... <ExternalFilter>  <PluginFileName>IPL_Plugin_sample.dll</PluginFileName>  <PluginParametersString>1</PluginParametersString> </ExternalFilter>
...
</ProcessingProfile>

Property name

Description

Default value

PluginFileName

Implementation of plugin with interface described in IPL_Plugin_Interface.h

 

PluginParametersString

String containing parameters plugin work. Format of this string is defined by concrete plugin developer

 


7. Image information

InfoGetBoundaries
InfoGetExif

InfoGetBoundaries

This operation allows detection of boundaries of the main object in the image. Please find further information in CIB aiModule.

Parameters of this function:

Property name

Description

Default value

InfoGetBoundaries/Algorithm

Which algorithm to use for border detection: New, Original, OriginalReduced, Ai. Ai requires the Ai module.

New

InfoGetBoundaries/ModelFilename

Filename of the model for the Ai based algorithm

-

InfoGetBoundaries/ConfidenceIncluded

Set “0” for correct boundary detection

 

 

Output properties: Boundaries, and Edges.

Boundaries: 8 numbers separated with semicolons (’;’) that all together represent the 4 corners of the bounding box.

Edges: Each edge consist of 4 numbers split with semicolons (‘;’). These numbers represent a line defined from border to border of the image in the format X0;Y0;X1;Y1.

 

Example

<job>
<steps> 
<step command="ipl">    
 <properties>      
  <property name="OperationName">InfoGetBoundaries</property>     
  <property name="Profile:InfoGetBoundaries/Algorithm">Ai</property>    
  <property name="Profile:InfoGetBoundaries/ModelFilename">document_v1.pb</property>    
  <property name="InputFilename">D:\PixelOne.jpg</property>    
  <property mode="out" name="InfoGetBoundaries/Boundaries"/>     
  <property mode="out" name="InfoGetBoundaries/Edges"/>   
 </properties> 
 </step>
</steps>
</job>             

 

Example (edges)

Request:

<property name="OperationName">InfoGetBoundaries</property> 

<property mode="out" name="Profile:InfoGetBoundaries/Edges"/>

Output:

<property name="InfoGetBoundaries/Edges">
  2550;0;2832;4048;2407;0;3048;4048;2263;0;3124;4048;2108;0;3191;4048;…
</property>


InfoGetExif

This operations extracts the Exif information from the input image.

There are no input parameters.

Output property: Exif.


8. Mergers

ImageChannelsMerger
ColorQRMerger
AlphaChannelMerger

ImageChannelsMerger

Merger for joining individual images.

Parameters of this merger can be described in profile:

<ProcessingProfile>
...
 <ImageChannelsMerger> <TargetColorSpace>RGB</TargetColorSpace>
 </RDO_Segmenter>
...
</ProcessingProfile>

Property name

Description

Default value

TargetColorSpace

Target color space: RGB/GRAY

RGB


ColorQRMerger

Merger for joining individual images belonging to QR codes (experimental). Each input image represents a channel in the RGB color space.

There are no parameters for this merger, besides the images themselves. Maximum number of input images is limited to the range [1-3].


AlphaChannelMerger

Interface for tools for alpha channel merging.

Parameters of this merger can be described in profile:

<ProcessingProfile>
...
 <AlphaChannelMerger> <AlphaChannelValue>255</AlphaChannelValue>
 </AlphaChannelMerger>
...
</ProcessingProfile>

Property name

Description

Default value

AlphaChannelValue

Value for alpha channel

255


9. Segmenters

RangesSegmenter
RDO_Segmenter
ColorQRSegmenter
SplitChannelsSegmenter

RangesSegmenter

Interface of image segmentation by color ranges.

This segmenter allows to extract from image to separated images all pixels with colors that fall within user defined ranges (or if it is required pixel that do not fall within these ranges). These ranges can be set by definition of lower and upper range boundaries:

<RangesSegmenter GetMasks="0">
<UsedColorSpace>RGB</UsedColorSpace>
<LowerBoundaries>0,0,0;130,55,80;219,200,130</LowerBoundaries>
<UpperBoundaries>128,128,128;209,190,190;255,255,191</UpperBoundaries>
</RangesSegmenter>

Property name

Description

Default value

UsedColorSpace

Colorspace of an image

RGB

LowerBoundaries

Lower boundaries of a range

0,0,0;127,127,127

UpperBoundaries

Upper boundaries of a range

128,128,128;255,255,255

GetMasks

Flag for masks

0


RDO_Segmenter

Segmenter for extracting layers from an image.

This segmentation procedure is based on article Cheng, H. and Bouman, C.A., 2001. Document compression using rate-distortion optimized segmentation. Journal of Electronic Imaging, 10(2), pp.460-475. But RDO_Segmenter is modification of algorithm from the article.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
<RDO_Segmenter>  <ImageBlockSize>8</ImageBlockSize>  <IsTextBinaryMaskRequired>true</IsTextBinaryMaskRequired> <ThreshHigh>150.0</ThreshHigh> <ThreshLow>25.0</ThreshLow> <ThreshMean>200.0</ThreshMean>  <DCTCoeff>400</DCTCoeff> <ThreshVariance>25</ThreshVariance> <IsDownsamplingRequired>false</IsDownsamplingRequired>  <RatioForeground>4.0</RatioForeground> <RatioBackground>2.0</RatioBackground>
</RDO_Segmenter>
...
</ProcessingProfile>

Property name

Description

Default value

ImageBlockSize

Size of image blocks for processing

8

IsTextBinaryMaskRequired

Flag for result layers filling

true

ThreshHigh

High threshold for the segmenter

150.0

ThreshLow

Low threshold for the segmenter

25.0

ThreshMean

Mean threshold for the segmenter

200.0

DCTCoeff

Threshold for discrete cosine transform

400

ThreshVariance

Variance threshold

25

IsDownsamplingRequired

Flag for optional background and foreground downsampling

false

RatioForeground

Scale factor for foreground downsampling

4.0

RatioBackground

Scale factor for background downsampling

2.0


ColorQRSegmenter

Segmenter for extracting layers from a QR RGB image (experimental). It only accepts 1 input image, and outputs 3 images, one per channel.

Parameters of this filter can be described in profile:

<ProcessingProfile>
...
<ColorQRSegmenter> <IsTextBinaryMaskRequired>true</IsTextBinaryMaskRequired>
</ColorQRSegmenter>
...
</ProcessingProfile>

Property name

Description

Default value

MaxSide

Longest side for rescaling

0

CleanBackground

If enabled it attempts to clean the background

false

Blur

If enabled it will execute blurring

false

Sharp

If enabled it will add a sharp filter

false

HueDiscretization

If enabled it will use HUE discretization to process the image

false

Grayscale

If enabled, final image will not be binarized

false


SplitChannelsSegmenter

This segmenter allows to separate multichannel image to few grayscale images with one channel.

There are no parameters for this segmenter.


10. Image comparer

ComparePSNR

Compares two images and return the PSNR.

Output property: PSNR.


CompareDifference

Compares two images and return the difference.

Property name

Description

Default value

ScaleX

Value to scale X axis.

-1.0

ScaleY

Value to scale Y axis.

-1.0

nProcessedImageSize

Use this to scale the image (long side). Only if ScaleX and ScaleY are less than 0.

512

 

Output property: Difference.


11. Algorithms sets

Algorithms sets are used for describing of complex image processing procedures. Algorithm can be described in two ways:

  • sequence of image filters,
  • directed graph of image processors.

The first way allows usage of image filters only. In this case we just describe an order of filters call. For example:
<algorithms> 
...
      <algorithm name="SimpleAlgorithm">
          <filter type="HuangBilateralFilter" params="KernelSize:11" />          
<filter type="SavoulaBinarizerFilter" params="WindowSize:101|ThresholdCoefficient:0.015" />
          <filter type="OpenFilter" params="IterationCount:2" />
      </algorithm>  ...
  </algorithms>

This sample shows sequential filtration of single input image by three filters:




The second way allows usage of all processors (filters, segmenters, mergers). In this case we describe algorithm as set of processor blocks combined to layers and input/output of each block. For example:

  <algorithms> 
...>      
<algorithm name="GraphAlgorithm" inputs="in1=$1|in2=$2" outputs="l1p1o1=$1|l2p1o1=$2">         
<layer>
               <processor type="ColorRangesFilter" params="IsMaskOnlyRequired:0|IsInRangeColorsRequired:1|LowerBondaries:0,0,0|
UpperBondaries:96,96,96"
inputs="in1" outputs="l1p1o1" />
               <processortype="ColorSpaceConvertionFilter" params="TargetColorspace:GRAY" inputs="in2" outputs="l1p2o1" />          
</layer>>          
<layer>
               <processor type="AlphaChannelMerger" params="AlphaChannelValue:128" inputs="l1p1o1|l1p2o1" outputs="l2p1o1" />          
</layer>      
</algorithm> 
...  
</algorithms>

   

This sample shows processing of two files with further merging of preliminary processing results:




12. CIB aiModule

Description
Properties

Description

Currently, CIB aiModule is only called via CIB image toolbox. Its functionality is to detect boundaries in order to auto crop images correctly.

The following libraries are required to run CIB aiModule:

Version

Library

Windows 64

CibAiModule64.dll, tensorflow.dll

Linux x86 64

libcibaimodule64.so, libgcc_s.so.1, libstdc++.so.6, libtensorflow.so, libtensorflow_framwork.so

Android x86 64

libcibaimodule64.so

Android arm 64

libcibaimodule64.so


Properties

The following properties are required for CIB image toolbox to call cropping with CIB aiModule:

Property name

Description

Default value

OperationName

Name

InfoGetBoundaries

Profile:InfoGetBoundaries/Algorithm

Which algorithm to use for border detection: New, Original, OriginalReduced, Ai. Ai requires the Ai module.

Ai

Profile:InfoGetBoundaries/ModelFilename

Path to the file that contains trained data for requested operation (now only image-cropping model exists)

<Path_To_Model_File>

Profile:InfoGetBoundaries/ConfidenceIncluded

 

0

 

Further supported input properties of CIB aiModule:

Property name

Description

Default value

InputMemoryAddress

string representation of an address in the memory where input image data is provided (image data as an in-memory Bitmap)

-

Width

Width of the input image, provided by InputMemoryAddress

-

Height

Height of the input image, provided by InputMemoryAddress

-

 

Output properties of CIB aiModule:

Property name

Description

Default value

Result

Contains the result. For image-cropping, the result contains XY-coordinates of four vertices (8 numbers) in string format, numbers are separated by semicolon

-


13. Returncodes

Returncode

Meaning

2101

Memory could not be allocated

2102

Input job handle is not set or incorrect

2103

Input Parameter has not been set

2104

Output parameter is not set or incorrect

2105

Invalid Property Name (Preview Creation/ Image Processor)

2106

Required Property is not defined

2108

Property Value could not be set

2109

Property Value could not be read

2110

empty or invalid parameter (e.g. input/output directory or file)

2111

Error while reading file

2112

Error while parsing image to cv.MAT format

2113

Both, input file AND blob, are defined

2120

Runtime error

2130

Initialization error

*This table contains errors of the IPL. Bold errorcodes indicate standard returncodes.